

High-Dimensional Sparse Clustering via Iterative Semidefinite Programming Relaxed K-Means

Presenter: Jongmin Mun

November 19, 2025

Sparse Clustering Problem

Goal: Partition unlabeled observations $\mathbf{X}_1, \dots, \mathbf{X}_n \in \mathbb{R}^p$ into clusters G_1, \dots, G_K ($n \ll p$, known K)

Sparse Gaussian Mixture Model:

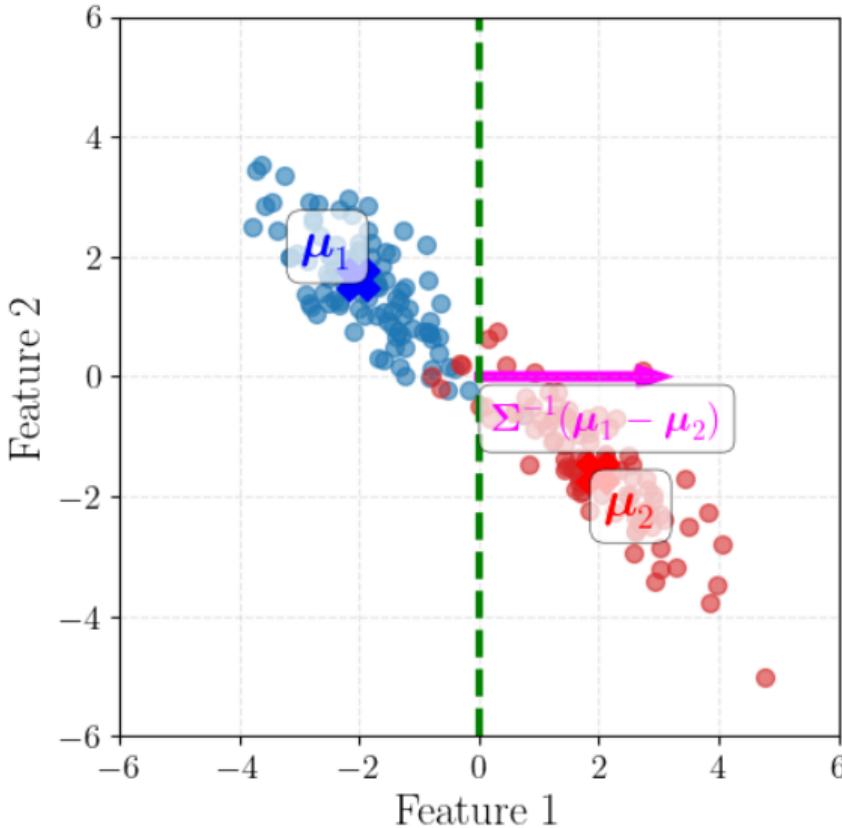
- Each observation \mathbf{X}_i belongs to a cluster G_k with mean $\boldsymbol{\mu}_k \in \mathbb{R}^p$:

$$\mathbf{X}_i \sim N(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}) \quad \text{if} \quad \mathbf{X}_i \in G_k$$

- Fisher LDA boundary between G_k and G_ℓ : $\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_k - \boldsymbol{\mu}_\ell)$
- Sparsity assumption: there exist **signal features** and **noise features**

$$S_0 := \bigcup_{k \neq \ell} \text{supp}(\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_k - \boldsymbol{\mu}_\ell)), \quad \{1, \dots, p\} \setminus S_0$$

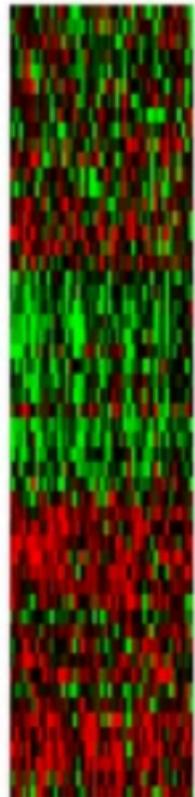
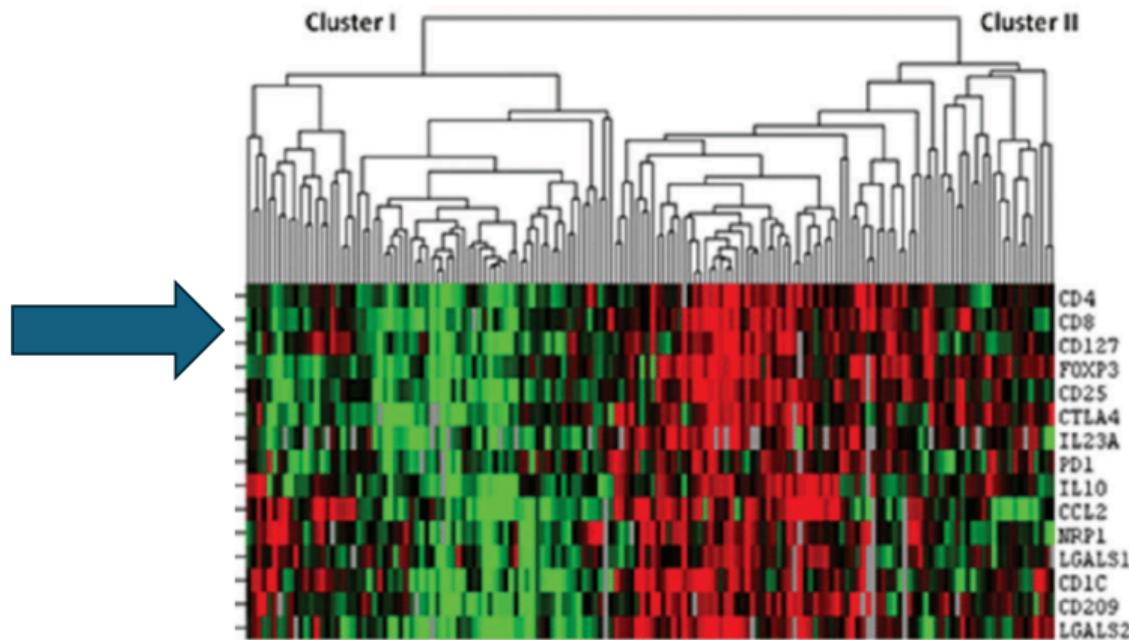
Sparsity assumption



$\mu_1 - \mu_2 = \begin{pmatrix} -4 \\ 3.2 \end{pmatrix}$ is **not sparse**.

$$\begin{aligned}\Sigma^{-1}(\mu_1 - \mu_2) &= \begin{pmatrix} 1 & -0.8 \\ -0.8 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -4 \\ 3.2 \end{pmatrix} \\ &= \begin{pmatrix} -4 \\ 0 \end{pmatrix} \text{ is **sparse**.}\end{aligned}$$

Example: disease subtype discovery from gene expression



Example: disease subtype discovery from gene expression

	Our method	IF-PCA	SKM	SAS
Leukemia	0.93	0.84	0.79	0.87

- Leukemia dataset: $n = 45$, $p = 3871$, $K = 2$
- Cluster data with labels hidden, evaluate accuracy with true labels
- Baselines: IF-PCA (feature selection \rightarrow clustering), SKM and SAS
(iteratively alternate over feature selection and clustering)

Our approach

- **SDP K-means (Peng and Wei, 2005)**
 - Avoids explicit cluster-center estimation
 - Minimax optimal in fixed-dimension, non-sparse regimes (**Chen et al., 2021**)
- **Our contributions**
 - Motivating theory: Extend the analysis of Chen et al. 2021 to sparse setting to study the role of sparsity and feature selection on SDP K-means
 - Extend SDP K-means into an iterative, sparsity-aware algorithm for known covariance setting
 - Extend our algorithm into unknown covariance setting, using the high-dimensional precision matrix estimation tool

K-means (NP-hard)

$$\min_{G_1, \dots, G_K} \sum_{k=1}^K \sum_{i \in G_k} \|\mathbf{X}_i - \bar{\mathbf{X}}_{G_k}\|_2^2$$

$$\text{s.t. } G_1 \cup \dots \cup G_k = \{1, \dots, n\}$$

$$G_k \cap G_\ell = \emptyset \text{ for } k \neq \ell$$

SDP Relaxed K-means

$$\max_{Z \in \mathbb{R}^{n \times n}} \langle \mathbf{X}^\top \mathbf{X}, Z \rangle_F$$

$$\text{s.t. } Z = Z^\top, Z \succeq 0, Z \geq 0,$$

$$\text{tr}(Z) = K, Z \mathbf{1}_n = \mathbf{1}_n$$

Equivalent matrix form (NP-hard)

$$\max_{\mathbf{H} \in \{0,1\}^{n \times K}} \langle \mathbf{X}^\top \mathbf{X}, \mathbf{H} \mathbf{B} \mathbf{H}^\top \rangle_F, \text{ s.t. } \mathbf{H} \mathbf{1}_K = \mathbf{1}_n$$

$\mathbf{X} \in \mathbb{R}^{p \times n}$ (data matrix), $\mathbf{B} := (\text{diag}(\mathbf{1}_n^\top \mathbf{H}))^{-1}$

$Z = \mathbf{H} \mathbf{B} \mathbf{H}^\top$ satisfies:

symmetric, PSD, nonnegative, trace K , row sum 1

True cluster in combinatorial problem is
block-diagonal

Let G_1^*, \dots, G_K^* be true clusters.

The corresponding decision variable is:

$$\mathbf{Z}^* = \mathbf{H}^* \mathbf{B}^* \mathbf{H}^{*\top} =$$

$$\begin{bmatrix} \frac{1}{|G_1^*|} \mathbf{1}_{|G_1^*| \times |G_1^*|} & 0 & \cdots & 0 \\ 0 & \frac{1}{|G_2^*|} \mathbf{1}_{|G_2^*| \times |G_2^*|} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{|G_K^*|} \mathbf{1}_{|G_K^*| \times |G_K^*|} \end{bmatrix}$$

In practice:

Run spectral clustering on $\hat{\mathbf{Z}}$

Optimal point of
SDP problem:

$\hat{\mathbf{Z}}$ = Continuous matrix s.t.

Symmetric, PSD, nonnegative, trace K , row sum 1

Theory (Chen et al. 2021):

If $\min_{1 \leq k \neq \ell \leq K} \|\boldsymbol{\mu}_\ell - \boldsymbol{\mu}_k\|_2^2$

is large enough, with high probability, $\hat{\mathbf{Z}}$ is exactly \mathbf{Z}^*

For any feature subset $S \subseteq [p]$,

Let $\hat{\mathbf{Z}}(S)$ denote the solution of the SDP corresponding to S :

$$\max_{\mathbf{Z} \in \mathbb{R}^{n \times n}} \langle \mathbf{X}_{S,:}^\top \mathbf{X}_{S,:}, \mathbf{Z} \rangle_F \quad \text{s.t.} \quad \mathbf{Z} = \mathbf{Z}^\top, \mathbf{Z} \succeq 0, \text{tr}(\mathbf{Z}) = K, \mathbf{Z}\mathbf{1}_n = \mathbf{1}_n, \mathbf{Z} \geq 0.$$

Collection of strong signal feature subsets:

$$\mathcal{S} := \left\{ S \subset [p] : \min_{1 \leq k \neq \ell \leq K} \|(\boldsymbol{\mu}_\ell - \boldsymbol{\mu}_k)_{S \cap S_0}\|_2^2 \gtrsim \left(\log n + \frac{|S| \log p}{n} + \sqrt{\frac{|S| \log p}{n}} \right) \right\}$$

Theorem (Uniform recovery of restricted SDPs)

Assume $\boldsymbol{\Sigma} = \mathbf{I}_p$. Then for any distribution instance in our model,

$$\mathbb{P}\left(\hat{\mathbf{Z}}(S) = \mathbf{Z}^*, \forall S \in \mathcal{S}\right) \gtrsim 1 - \frac{K}{n}.$$

Theorem (Tightness of the required separation)

Assume $\Sigma = \mathbf{I}_p$. There exists a distribution instance in our model such that

1. $\min_{1 \leq k \neq \ell \leq K} \|(\boldsymbol{\mu}_\ell^* - \boldsymbol{\mu}_k^*)_{S_0}\|_2^2 = C \log n$, where C is a constant,
2. For any clustering method f , $\mathbb{P}(f(\mathbf{X}_{S_0, \cdot}) \neq \{G_1^*, \dots, G_K^*\}) \gtrsim 1 - \frac{1}{n}$

If we consider uniform recovery problem restricted to moderately sized subsets satisfying $|S| \lesssim (n \log n) / \log p$:

$$\log n + \frac{|S| \log p}{n} + \sqrt{\frac{|S| \log p}{n}} \asymp \log n.$$

Then SDP K-means is optimal in terms of required separation

Intuition from the theorem

- Simple scenario: $K = 2$, $(\mu_1^* - \mu_2^*)_{S_0} = \mu_0 \mathbf{1}_{|S_0|}$, and $|S| \lesssim (n \log n) / \log p$
- Exact recovery for all S is possible if and only if

$$|S \cap S_0| \mu_0^2 \gtrsim \log n + \frac{|S| \log p}{n} + \sqrt{\frac{|S| \log p}{n}}.$$

Insights:

1. Features should be chosen based on $\min_{1 \leq k \neq \ell \leq K} \|(\mu_\ell^* - \mu_k^*)_{S \cap S_0}\|_2^2$
2. Mild under- or over-selection is acceptable; severe misselection is harmful
3. Once the algorithm reaches a high-signal subset S , reliable clustering follows

Our Iterative Method under identity covariance

Initialize

Initial clusters

$\hat{G}_1^{(0)}$ and $\hat{G}_2^{(0)}$

Until convergence

Feature Selection

Given: $\hat{G}_1^{(t-1)}$ and $\hat{G}_2^{(t-1)}$

estimate $\mu_1^* - \mu_2^*$ by $\bar{\mathbf{X}}_{\hat{G}_1^{(t-1)}} - \bar{\mathbf{X}}_{\hat{G}_2^{(t-1)}}$

$$\hat{S}^t := \left\{ j \in [p] : |(\bar{\mathbf{X}}_{\hat{G}_1^{(t-1)}} - \bar{\mathbf{X}}_{\hat{G}_2^{(t-1)}})_j| > \sqrt{\frac{2n \log(2p)}{|\hat{G}_1^{(t-1)}| |\hat{G}_2^{(t-1)}|}} \right\}.$$

Cluster Update

Given: selected features $\hat{S}^{(t)}$

Solve $\max_{\mathbf{Z} \in \mathbb{R}^{n \times n}} \langle \mathbf{X}_{\hat{S}^{(t)}, \cdot} \mathbf{X}_{\hat{S}^{(t)}, \cdot}^\top, \mathbf{Z} \rangle$

s.t. $\mathbf{Z}^\top = \mathbf{Z}$, $\mathbf{Z} \succeq 0$, $\text{tr}(\mathbf{Z}) = K$, $\mathbf{Z} \mathbf{1}_n = \mathbf{1}_n$, $\mathbf{Z} \geq 0$.

Return $\hat{G}_1^{(t)}$ and $\hat{G}_2^{(t)}$

Extension to Unknown Common Covariance

Assumptions:

- Each row of Σ^{-1} has at most J nonzero off-diagonal entries
- There exists a small subset of relevant features $S_0 \subseteq \{1, \dots, p\}$ with $|S_0| \ll p$, such that

$$S_0 := \bigcup_{k \neq \ell} \text{supp}\left(\Sigma^{-1}(\boldsymbol{\mu}_k - \boldsymbol{\mu}_\ell)\right) \subset [p].$$

Feature selection step: Replace $\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2$ estimation with

$$\Sigma^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

Unknown Covariance: Clustering Step

SDP K-Means for general Σ (Zhuang et al 2023), without sparsity:

$$\begin{aligned} \max_{Z \in \mathbb{R}^{n \times n}} \quad & \left\langle (\Sigma^{-1} Z)^\top \Sigma (\Sigma^{-1} Z), Z \right\rangle \\ \text{s.t.} \quad & Z^\top = Z, Z \succeq 0, \text{tr}(Z) = K, Z \mathbf{1}_n = \mathbf{1}_n, Z \geq 0. \end{aligned}$$

Unknown Covariance: Clustering Step

Given selected features $\hat{S}^{(t)}$, we solve SDP with sub-matrices:

$$\begin{aligned} \max_{Z \in \mathbb{R}^{n \times n}} \quad & \left\langle (\Sigma^{-1} X)_{\hat{S}^{(t)}, \cdot}^\top, \Sigma_{\hat{S}^{(t)}, \hat{S}^{(t)}} (\Sigma^{-1} X)_{\hat{S}^{(t)}, \cdot}, Z \right\rangle \\ \text{s.t.} \quad & Z^\top = Z, Z \succeq 0, \text{tr}(Z) = K, Z \mathbf{1}_n = \mathbf{1}_n, Z \geq 0 \end{aligned}$$

What We Need to Estimate

For both the feature selection and clustering steps, the key quantity required for the extension is

$$\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \quad \text{and} \quad \boldsymbol{\Sigma}^{-1}\mathbf{X}.$$

We *do not* need to explicitly estimate the full precision matrix $\boldsymbol{\Sigma}^{-1}$.

Our approach: nodewise regression

We adapt the **Innovated Scalable Efficient Estimation (ISEE; Fan and Lv 2016)**

Idea: Partition the feature indices $[p]$ into disjoint subsets A_1, A_2, \dots, A_m . For each subset A , estimate

$$\Sigma^{-1}\mathbf{X} = \begin{pmatrix} (\Sigma^{-1}\mathbf{X})_{A,:} \\ \vdots \\ \vdots \\ \vdots \end{pmatrix} \quad \Sigma^{-1}\boldsymbol{\mu}_k = \begin{pmatrix} (\Sigma^{-1}\boldsymbol{\mu}_k)_{A,:} \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$$

by nodewise regression.

Nodewise regression

By multivariate Gaussian assumption $\mathbf{X}_i \stackrel{iid}{\sim} N(\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$,

$$\begin{aligned} \underbrace{(\mathbf{X}_i)_A}_{\text{response}} &= \underbrace{(\boldsymbol{\mu}_k)_A + \boldsymbol{\Omega}_{A,A}^{-1} \boldsymbol{\Omega}_{A,A^c} (\boldsymbol{\mu}_k)_{A^c} - \underbrace{\boldsymbol{\Omega}_{A,A}^{-1} \boldsymbol{\Omega}_{A,A^c} \mathbf{X}_{A^c,i}}_{\text{slope}}}_{\text{intercept}} \\ &+ \underbrace{\mathbf{E}_{A,i}}_{\text{residual}}, \text{ where } \mathbf{E}_{A,i} \sim N(\mathbf{0}, \boldsymbol{\Omega}_{A,A}^{-1}). \end{aligned}$$

$$\boldsymbol{\mu}_k = \begin{pmatrix} (\boldsymbol{\mu}_k)_A \\ (\boldsymbol{\mu}_k)_{A^c} \end{pmatrix}$$

$$\boldsymbol{\Omega} = \begin{pmatrix} \boldsymbol{\Omega}_{A,A} & \boldsymbol{\Omega}_{A,A^c} \\ \boldsymbol{\Omega}_{A^c,A} & \cdots \end{pmatrix}$$

$$\mathbf{X}_i = \begin{pmatrix} (\mathbf{X}_i)_A \\ (\mathbf{X}_i)_{A^c} \end{pmatrix}$$

Nodewise regression

- $(\Sigma^{-1}\mu_k)_A = \underbrace{\Omega_{A,A}}_{\text{Cov(residual)}} \underbrace{\left((\mu_k)_A + \Omega_{A,A}^{-1} \Omega_{A,A^c} (\mu_k)_{A^c} \right)}_{\text{intercept}}$
- $(\Sigma^{-1}\mathbf{X}_i)_A = (\Sigma^{-1}\mu_k)_A + \underbrace{\Omega_{A,A}}_{\text{Cov(residual)}} \underbrace{\mathbf{E}_{A,i}}_{\text{residual}}.$

$$\mu_k = \begin{pmatrix} \text{red block} \\ \text{blue block} \end{pmatrix} \quad \begin{matrix} (\mu_k)_A \\ (\mu_k)_{A^c} \end{matrix}$$

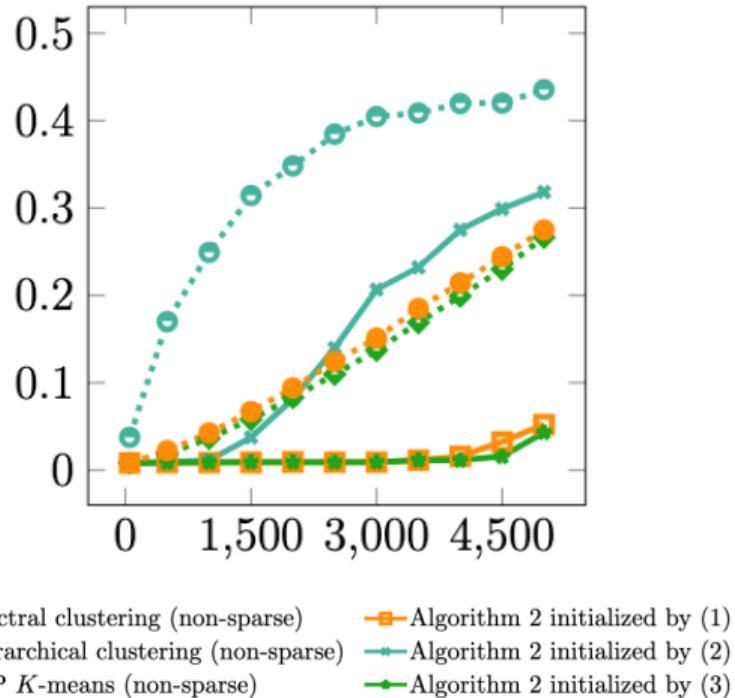
$$\Omega = \begin{pmatrix} \text{red block} & \text{green block} \\ \text{blue block} & \dots \end{pmatrix} \quad \begin{matrix} \Omega_{A,A^c} \\ \Omega_{A,A} \end{matrix}$$

$$\mathbf{X}_i = \begin{pmatrix} \text{red block} \\ \text{blue block} \end{pmatrix} \quad \begin{matrix} (\mathbf{X}_i)_A \\ (\mathbf{X}_i)_{A^c} \end{matrix}$$

Our Iterative Method under sparse precision matrix

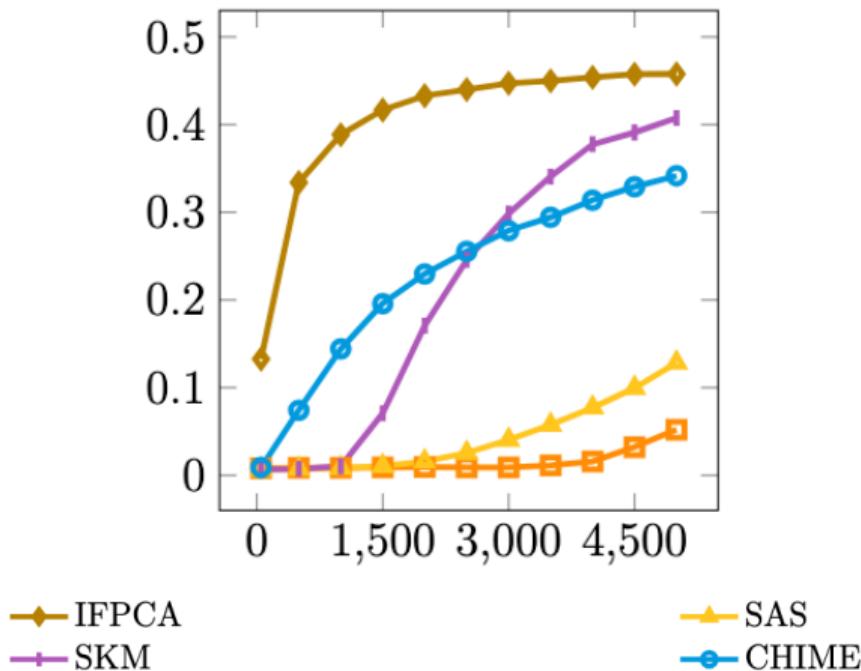
1. **Initialize:** Obtain initial cluster assignments $\hat{G}_1^0, \hat{G}_2^0 \subset [n]$.
2. **Iterate for** $t = 0, 1, 2, \dots$, until convergence:
 - 2.1 **ISEE subroutine:** Given $\hat{G}_1^{(t)}$ and $\hat{G}_2^{(t)}$, estimate $\Sigma^{-1}(\mu_1^* - \mu_2^*)$, $\Sigma^{-1}\mathbf{X}$,
 - 2.2 **Feature selection:** Let \hat{S}^{t+1} be features where estimated $\Sigma^{-1}(\mu_1^* - \mu_2^*)$ vector has large magnitude.
Threshold defined by ℓ_2 convergence rate of ISEE
 - 2.3 **Cluster update:** Run SDP-relaxed K-means on the selected features $\tilde{\mathbf{X}}_{\hat{S}^{t+1}, \cdot}$, $\Sigma_{\hat{S}^{t+1}, \hat{S}^{t+1}}$ to estimate new clusters $\hat{G}_1^{t+1}, \hat{G}_2^{t+1}$.

Simulations: identity covariance



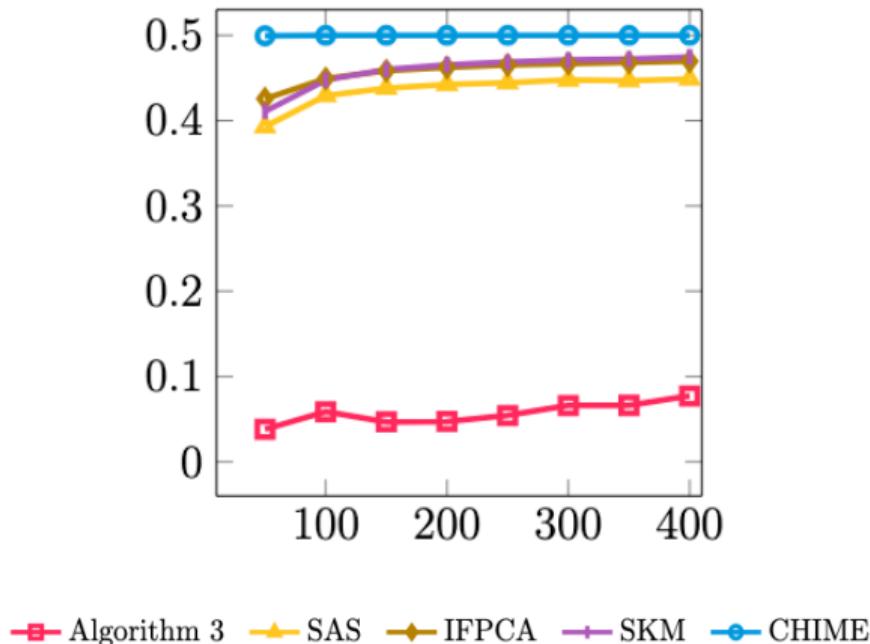
- X-axis: Dimension p increases while $|S_0| = 10$ and $\|\mu_1 - \mu_2\|_2^2 = 5^2$ are fixed
- Y-axis: mis-clustering rate
- Our method improves upon the non-sparsity-aware baseline.
- Dependence on initial clustering is mild.

Simulations: identity covariance



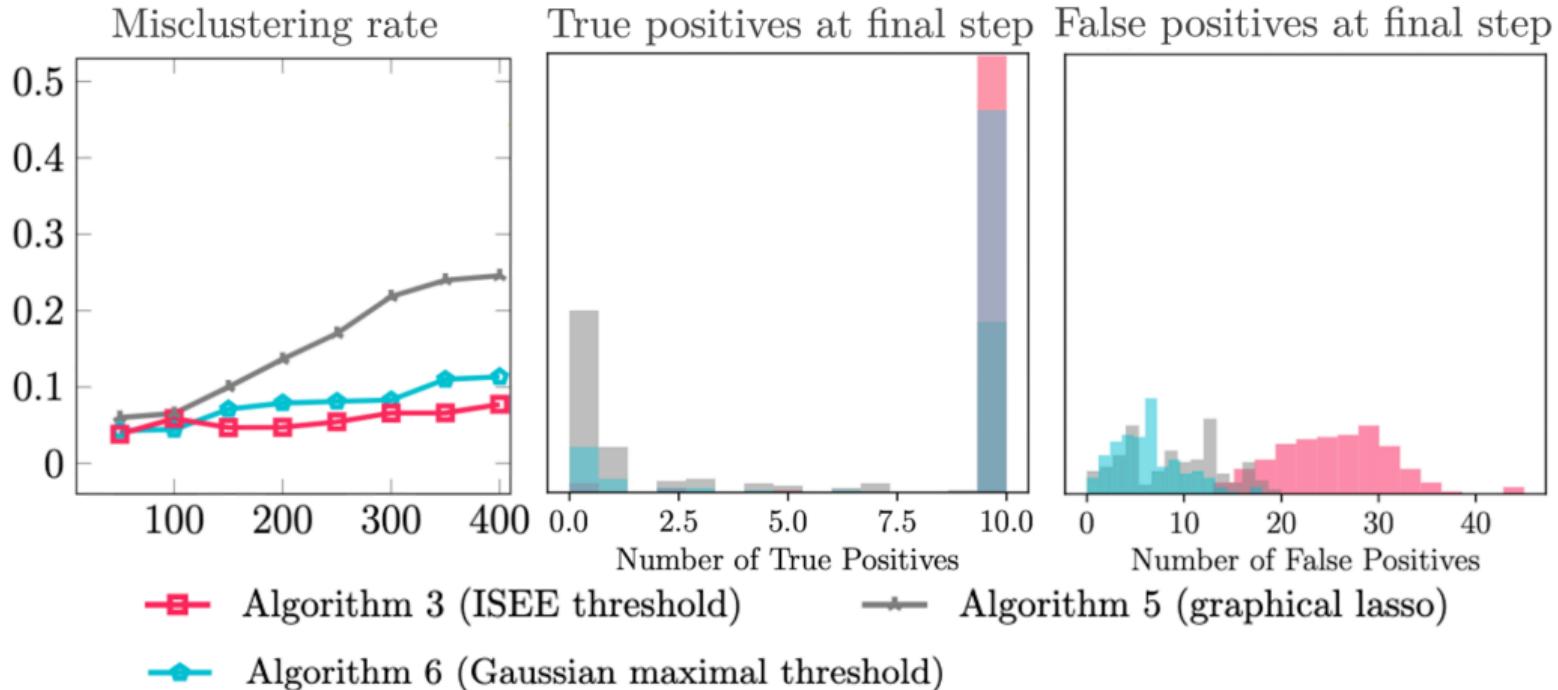
- X-axis: Dimension p increases while $|S_0| = 10$ and $\|\mu_1 - \mu_2\|_2^2 = 5^2$ are fixed
- Y-axis: mis-clustering rate
- Our method outperforms existing two-step and iterative methods

Simulations: effectiveness of ISEE and threshold



- Σ^{-1} : chain graph with correlation 0.45
- X-axis: Dimension p increases while $|S_0| = 10$, $\|\Sigma^{-1}(\mu_1 - \mu_2)\|_2^2 = 4^2$ fixed
- Y-axis: mis-clustering rate
- Our method outperforms existing two-step and iterative methods

Simulations: sparse precision matrix



Real Data Analysis

	Our method	IFPCA	SKM	SAS
Leukemia	0.93	0.84	0.79	0.87
MNIST	0.94	0.61	0.57	0.56

- Leukemia: $n = 45, p = 3871$
- MNIST: $n = 1000, p = 784$, digits 1 and 7
- Evaluation metric: clustering accuracy

Conclusion

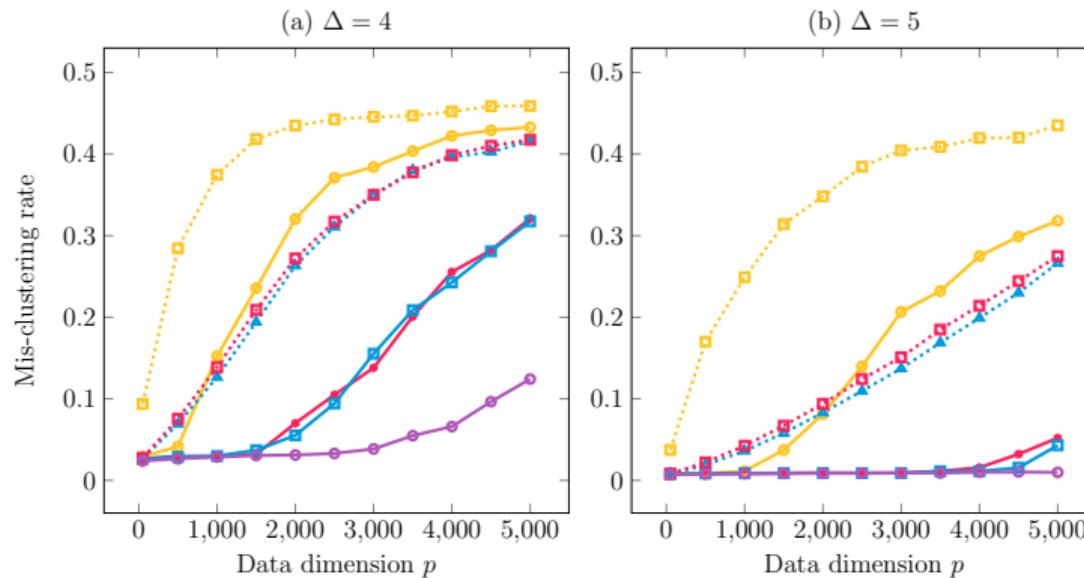
Sparsity-aware iterative clustering combining convex relaxation, feature selection, and high-dimensional precision estimation.

- Theory-guided:
 - SDP K-means achieves simultaneous exact recovery on feature subsets with sufficient signal; signal requirement is optimal under mild assumptions.
 - Mild under- or over-selection is acceptable; aggressive misselection is harmful.
- Algorithm highlights:
 - Alternates between feature selection (via estimated Fisher LDA) and clustering (SDP K-means).
 - Nodewise regression (ISEE) avoids full precision matrix estimation.

Future Extensions

- Key insight: Mild under- or over-selection is tolerable, but aggressive misselection is harmful
- Current limitation: Past clustering and feature selection results are not explicitly utilized
- Proposed improvements: Introduce explicit exploration and memory
 - Use Thompson sampling for randomized feature selection
 - Update Beta distributions to retain memory of past results
 - Random draws from the Beta distributions encourage exploration

Preliminary simulation for Thompson sampling approach



Algorithm 1 with spectral initialization	...
Algorithm 1 with hierarchical initialization	...
Algorithm 1 with SDP K means initialization	...
Algorithm 1 with permutation test	...