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Sparse Clustering Problem

Goal: Partition unlabeled observations X1, . . . , Xn ∈ Rp into clusters

G1, . . . , GK (n ≪ p, known K )

Sparse Gaussian Mixture Model:

• Each observation Xi belongs to a cluster Gk with mean µk ∈ Rp:

Xi ∼ N(µk, Σ) if Xi ∈ Gk

• Fisher LDA boundary between Gk and Gℓ: Σ−1(µk − µℓ)

• Sparsity assumption: there exist signal features and noise features

S0 :=
󰁞

k ∕=ℓ

supp
󰀃
Σ−1(µk − µℓ)

󰀄
, {1, . . . , p} \ S0
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Sparsity assumption

µ1 − µ2 =

󰀳

󰁅󰁃
−4

3.2

󰀴

󰁆󰁄 is not sparse.

Σ−1(µ1 − µ2) =

󰀳

󰁅󰁃
1 −0.8

−0.8 1

󰀴

󰁆󰁄

−1 󰀳

󰁅󰁃
−4

3.2

󰀴

󰁆󰁄

=

󰀳

󰁅󰁃
−4

0

󰀴

󰁆󰁄 is sparse.
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Example: disease subtype discovery from gene expression
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Example: disease subtype discovery from gene expression

Our method IF-PCA SKM SAS

Leukemia 0.93 0.84 0.79 0.87

• Leukemia dataset: n = 45, p = 3871, K = 2

• Cluster data with labels hidden, evaluate accuracy with true labels

• Baselines: IF-PCA (feature selection → clustering), SKM and SAS

(iteratively alternate over feature selection and clustering)
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Our approach

• SDP K-means (Peng and Wei, 2005)
— Avoids explicit cluster-center estimation

— Minimax optimal in fixed-dimension, non-sparse regimes (Chen et al., 2021)

• Our contributions
— Motivating theory: Extend the analysis of Chen et al. 2021 to sparse setting

to study the role of sparsity and feature selection on SDP K-means

— Extend SDP K-means into an iterative, sparsity-aware algorithm for known

covariance setting

— Extend our algorithm into unknown covariance setting, using the

high-dimensional precision matrix estimation tool



K-means (NP-hard)

min
G1,...,GK

K󰁛

k=1

󰁛

i∈Gk

󰀂Xi − X̄Gk
󰀂2

2

s.t. G1 ∪ . . . ∪ Gk = {1, . . . , n}

Gk ∩ Gℓ = ∅ for k ∕= ℓ

Equivalent matrix form (NP-hard)

max
H∈{0,1}n×K

〈X⊤X, HBH⊤〉F , s.t. H1K = 1n

X ∈ Rp×n (data matrix), B :=
󰀃
diag(1⊤

n H)
󰀄−1

Z = HBH⊤ satisfies:

symmetric, PSD, nonneg-

ative, trace K, row sum 1

SDP Relaxed K-means

max
Z∈Rn×n

〈X⊤X, Z〉F

s.t. Z = Z⊤, Z ≽ 0, Z ≥ 0,

tr(Z) = K, Z1n = 1n



True cluster in combinatorial problem is

block-diagonal

Let G∗
1, . . . , G∗

K be true clusters.

The corresponding decision variable is:

Z∗ = H∗B∗H∗⊤ =
󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
|G∗

1 | 1|G∗
1 |×|G∗

1 | 0 · · · 0

0 1
|G∗

2 | 1|G∗
2 |×|G∗

2 | · · · 0
...

. . .
...

0 0 · · · 1
|G∗

K
| 1|G∗

K
|×|G∗

K
|

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸

Optimal point of

SDP problem:

Ẑ = Continuous matrix s.t.

Symmetric, PSD, nonneg-

ative, trace K, row sum 1

In practice:

Run spectral clustering on Ẑ

Theory (Chen et al. 2021):

If min1≤k ∕=ℓ≤K

󰀐󰀐µℓ − µk

󰀐󰀐2
2

is large enough, with high

probability, Ẑ is exactly Z∗





Theorem (Tightness of the required separation)
Assume Σ = Ip. There exists a distribution instance in our model such that

1. min1≤k ∕=ℓ≤K

󰀐󰀐(µ∗
ℓ − µ∗

k)S0

󰀐󰀐2
2 = C log n, where C is a constant,

2. For any clustering method f , P
󰀃

f(XS0,·) ∕= {G∗
1, . . . , G∗

K}
󰀄
󰃒 1 − 1

n

If we consider uniform recovery problem restricted to moderately sized subsets

satisfying |S| ≲ (n log n)/ log p:

log n + |S| log p

n
+

󰁶
|S| log p

n
≍ log n.

Then SDP K-means is optimal in terms of required separation
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Intuition from the theorem

• Simple scenario: K = 2, (µ∗
1 − µ∗

2)S0 = µ01|S0|, and |S| ≲ (n log n)/ log p

• Exact recovery for all S is possible if and only if

|S ∩ S0|µ2
0 ≳ log n + |S| log p

n
+

󰁶
|S| log p

n
.

Insights:

1. Features should be chosen based on min1≤k ∕=ℓ≤K

󰀐󰀐(µ∗
ℓ − µ∗

k)S∩S0

󰀐󰀐2
2

2. Mild under- or over-selection is acceptable; severe misselection is harmful

3. Once the algorithm reaches a high-signal subset S, reliable clustering follows
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Our Iterative Method under identity covariance

Initialize

Initial clusters

Ĝ
(0)
1 and Ĝ

(0)
2

Feature Selection

Given: Ĝ
(t−1)
1 and Ĝ

(t−1)
2

estimate µ∗
1 − µ∗

2 by X̄
Ĝ

(t−1)
1

− X̄
Ĝ

(t−1)
2

Ŝt :=
󰀫

j ∈ [p] :
󰀏󰀏󰀃X̄

Ĝ
(t−1)
1

− X̄
Ĝ

(t−1)
2

󰀄
j

󰀏󰀏 >
󰁵

2n log(2p)
|Ĝ(t−1)

1 | |Ĝ(t−1)
2 |

󰀬

.

Cluster Update

Given: selected features Ŝ(t)

Solve maxZ∈Rn×n

󰀍
XŜ(t),·X

⊤
Ŝ(t),·, Z

󰀎

s.t. Z⊤ = Z, Z ≽ 0, tr(Z) = K, Z1n = 1n, Z ≥ 0.

Return Ĝ
(t)
1 and Ĝ

(t)
2

Until convergence
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Extension to Unknown Common Covariance

Assumptions:

• Each row of Σ−1 has at most J nonzero off-diagonal entries

• There exists a small subset of relevant features S0 ⊆ {1, . . . , p} with

|S0| ≪ p, such that

S0 :=
󰁞

k ∕=ℓ

supp
󰀓
Σ−1(µk − µℓ)

󰀔
⊂ [p].

Feature selection step: Replace µ1 − µ2 estimation with

Σ−1(µ1 − µ2)
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Unknown Covariance: Clustering Step

SDP K-Means for general Σ (Zhuang et al 2023), without sparsity:

max
Z∈Rn×n

󰁇
(Σ−1X)⊤Σ(Σ−1X), Z

󰁈

s.t. Z⊤ = Z, Z ≽ 0, tr(Z) = K, Z1n = 1n, Z ≥ 0.
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Unknown Covariance: Clustering Step

Given selected features Ŝ(t), we solve SDP with sub-matrices:

max
Z∈Rn×n

󰁇󰀃
Σ−1X

󰀄⊤
Ŝ(t),·ΣŜ(t),Ŝ(t)

󰀃
Σ−1X

󰀄
Ŝ(t),·, Z

󰁈

s.t. Z⊤ = Z, Z ≽ 0, tr(Z) = K, Z1n = 1n, Z ≥ 0
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What We Need to Estimate

For both the feature selection and clustering steps, the key quantity required for

the extension is

Σ−1(µ1 − µ2) and Σ−1X.

We do not need to explicitly estimate the full precision matrix Σ−1.



17/28

Our approach: nodewise regression

We adapt the Innovated Scalable Efficient Estimation (ISEE; Fan and

Lv 2016)

Idea: Partition the feature indices [p] into disjoint subsets A1, A2, . . . , Am. For

each subset A, estimate

Σ−1X =

(Σ−1X)A,·

. . .

. . .

. . .

Σ−1µk =
(Σ−1µk)A,·

. . .

. . .

. . .

by nodewise regression.
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Nodewise regression

By multivariate Gaussian assumption Xi
iid∼ N(µk, Σ),

(Xi)A󰁿 󰁾󰁽 󰂀
response

= (µk)A + Ω−1
A,AΩA,Ac(µk)Ac

󰁿 󰁾󰁽 󰂀
intercept

− Ω−1
A,AΩA,Ac

󰁿 󰁾󰁽 󰂀
slope

XAc,i

+ EA,i󰁿 󰁾󰁽 󰂀
residual

, where EA,i ∼ N(0, Ω−1
A,A).

µk = (µk)A

(µk)AC

Xi = (Xi)A

(Xi)AC

Ω =
ΩA,A ↗

ΩA,Ac

. . .

. . .
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Nodewise regression

• (Σ−1µk)A = ΩA,A󰁿 󰁾󰁽 󰂀
Cov(residual)

󰀓
(µk)A + Ω−1

A,AΩA,Ac(µk)Ac

󰀔

󰁿 󰁾󰁽 󰂀
intercept

• (Σ−1Xi)A = (Σ−1µk)A + ΩA,A󰁿 󰁾󰁽 󰂀
Cov(residual)

EA,i󰁿󰁾󰁽󰂀
residual

.

µk = (µk)A

(µk)AC

Xi = (Xi)A

(Xi)AC

Ω =
ΩA,A ↗

ΩA,Ac

. . .

. . .
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Our Iterative Method under sparse precision matrix

1. Initialize: Obtain initial cluster assignments Ĝ0
1, Ĝ0

2 ⊂ [n].

2. Iterate for t = 0, 1, 2, . . . , until convergence:

2.1 ISEE subroutine: Given Ĝ
(t)
1 and Ĝ

(t)
2 , estimate Σ−1(µ∗

1 − µ∗
2), Σ−1X,

2.2 Feature selection: Let Ŝt+1 be features where estimated Σ−1(µ∗
1 − µ∗

2)

vector has large magnitude.

Threshold defined by ℓ2 convergence rate of ISEE

2.3 Cluster update: Run SDP-relaxed K-means on the selected features X̃Ŝt+1,·

ΣŜt+1,Ŝt+1 to estimate new clusters Ĝt+1
1 , Ĝt+1

2 .
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Simulations: identity covariance

• X-axis: Dimension p increases

while |S0| = 10 and

󰀂µ1 − µ2󰀂2
2 = 52 are fixed

• Y-axis: mis-clustering rate

• Our method improves upon

the non–sparsity-aware

baseline.

• Dependence on initial

clustering is mild.
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Simulations: identity covariance

• X-axis: Dimension p increases

while |S0| = 10 and

󰀂µ1 − µ2󰀂2
2 = 52 are fixed

• Y-axis: mis-clustering rate

• Our method outperforms

existing two-step and iterative

methods
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Simulations: effectiveness of ISEE and threshold

• Σ−1: chain graph with

correlation 0.45

• X-axis: Dimension p increases

while |S0| = 10,

󰀂Σ−1(µ1 − µ2)󰀂2
2 = 42 fixed

• Y-axis: mis-clustering rate

• Our method outperforms

existing two-step and iterative

methods
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Simulations: sparse precision matrix
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Real Data Analysis

• Leukemia: n = 45, p = 3871

• MNIST: n = 1000, p = 784, digits 1 and 7

• Evaluation metric: clustering accuracy
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Conclusion

Sparsity-aware iterative clustering combining convex relaxation, feature selection,

and high-dimensional precision estimation.
• Theory-guided:

— SDP K-means achieves simultaneous exact recovery on feature subsets with

sufficient signal; signal requirement is optimal under mild assumptions.

— Mild under- or over-selection is acceptable; aggressive misselection is harmful.

• Algorithm highlights:
— Alternates between feature selection (via estimated Fisher LDA) and

clustering (SDP K-means).

— Nodewise regression (ISEE) avoids full precision matrix estimation.
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Future Extensions

• Key insight: Mild under- or over-selection is tolerable, but aggressive

misselection is harmful

• Current limitation: Past clustering and feature selection results are not

explicitly utilized

• Proposed improvements: Introduce explicit exploration and memory

— Use Thompson sampling for randomized feature selection

— Update Beta distributions to retain memory of past results

— Random draws from the Beta distributions encourage exploration



28/28

Prelimary simulation for Thompson sampling approach
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Algorithm 1 with spectral initialization Spectral initialization

Algorithm 1 with hierarchical initialization Hierarchical initialization

Algorithm 1 with SDP K means initialization SDP K means initialization

Bandit with permutation test


