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Sparse Clustering Problem

Goal: Partition unlabeled observations Xy, ..., X, € R? into clusters
G1,...,Gg (n < p, known K )
Sparse Gaussian Mixture Model:

e Each observation X; belongs to a cluster G, with mean p; € RP:
X, ~ N(,uk,E) if X;eG

o Fisher LDA boundary between Gy, and Gp: 71 — py)

o Sparsity assumption: there exist signal features and noise features

SO = Usupp(z_l(ﬂk—ﬂﬁ)), {1,,;0}\50
k#L
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Example: disease subtype discovery from gene expression

Our method IF-PCA SKM SAS

Leukemia 0.93 0.84 0.79 0.87

o Leukemia dataset: n =45, p = 3871, K =2
o Cluster data with labels hidden, evaluate accuracy with true labels

o Baselines: IF-PCA (feature selection — clustering), SKM and SAS

(iteratively alternate over feature selection and clustering)
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Our approach

o SDP K-means (Peng and Wei, 2005)
— Avoids explicit cluster-center estimation

— Minimax optimal in fixed-dimension, non-sparse regimes (Chen et al., 2021)

e Our contributions
— Motivating theory: Extend the analysis of Chen et al. 2021 to sparse setting
to study the role of sparsity and feature selection on SDP K-means
— Extend SDP K-means into an iterative, sparsity-aware algorithm for known
covariance setting
— Extend our algorithm into unknown covariance setting, using the
high-dimensional precision matrix estimation tool

6/28



( K-means (NP-hard)

min, Z > IXi = Xe, 3

Gy Kk 1ieGy,
sit. GLU. ..

GeN Gy=0for k #1¢

UG =11,...,n}

Vs

Equivalent matrix form (NP-hard)

max
He{0,1}nxK

X € RP*" (data matrix), B

= (diag(1, H))

(X'X,HBH )y, s.t. Hlg =1,

-1

SDP Relaxed K-means
max (X'X,Z)p
ZeRnX’n
st. Z2=2Z",Z2-0, Z>0,
tr(Z) =K, Z1, =1,

J

(.

Z = HBH' satisfies:
symmetric, PSD, nonneg-

ative, trace K, row sum 1




True cluster in combinatorial problem is
block-diagonal
Let G7,...,GY% be true clusters.

The corresponding decision variable is:

Z* _ H*B*H*T —
1
et licixiG;l 0 0
1
0 |G;|1|G§IX\GSI 0
1
0 0 e LG X6y

In practice:

Run spectral clustering on Z

Optimal point of
SDP problem:
Z = Continuous matrix s.t.
Symmetric, PSD, nonneg-

ative, trace K, row sum 1

Theory (Chen et al. 2021):
. 2
If ming <ge< i || e — g |,
is large enough, with high
probability, 7 is exactly Z*




For any feature subset S C [p] ,
Let Z(S) denote the solution of the SDP corresponding to S:

ax (X! Xs.,Z)r st. Z=Z",Z>0,tr(Z)=K,Z1,=1,, Z>0.
c nxn !

Collection of strong signal feature subsets:

i S|logp S|logp
S = {S C [p] : 1§}CI£?§KH(IJ’E - p’k)SﬂS()Hg 2 (logn—|— l |n + \/T)}

Theorem (Uniform recovery of restricted SDPs)

Assume 3 =1,,. Then for any distribution instance in our model,

P(2(5)=2", ¥Se§) 51~ %




Theorem (Tightness of the required separation)

Assume 3 = 1,,. There exists a distribution instance in our model such that
1. minlgk#gK”(HZ — #Z)SoH; = C'logn, where C' is a constant,
2. For any clustering method f, P( f(Xs,,) # {Gi,...,.Gx}) 21—+

If we consider uniform recovery problem restricted to moderately sized subsets

satisfying |S| < (nlogn)/logp:

S| [1S]1
logn+‘ | ng+ |5]1og p = logn.
n n

Then SDP K-means is optimal in terms of required separation




Intuition from the theorem

e Simple scenario: K = 2, (u] — p3)s, = pol|g,), and |[S| S (nlogn)/logp

o Exact recovery for all S is possible if and only if
S| S|
|SFW&ﬂﬂgzlogn+—’;%p—+\H |;gp'

1. Features should be chosen based on minj o< ||(6; — 17)sns0 H;

Insights:

2. Mild under- or over-selection is acceptable; severe misselection is harmful
3. Once the algorithm reaches a high-signal subset S, reliable clustering follows
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Initialize
Initial clusters

G\ and G

Until convergence

Our Iterative Method under identity covariance

Vs

(.

Feature Selection

Given: égt_l) and ég_l)

estimate pu} — pus by Xé(tfl) — Xé(tq)
1 2

& . v v 2nlog(2
St = {jé[p]:’(Xé(lt_l)—XGét_l))j’> M}

[ESRITE S

J

!

Vs

Cluster Update
Given: selected features S()
Solve max zegnxn <X§<t)y.X§T(t)7., Z)
st. Z'=2Z,Z = 0,tr(Z2)=K,Z1, =1,,Z > 0.

Return G’gt) and C?gt)

N
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Extension to Unknown Common Covariance
Assumptions:
« Each row of X! has at most J nonzero off-diagonal entries

o There exists a small subset of relevant features Sy C {1,...,p} with

|So| < p, such that

So = U supp(Efl(uk - ;Lg)) C [p].
ket

Feature selection step: Replace p; — po estimation with

SN pr — p2)
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Unknown Covariance: Clustering Step

SDP K-Means for general 3 (Zhuang et al 2023), without sparsity:
max  ((37'X)"B(27'X), Z)

ZeRan

st. Z'=2,Z-0,tr(Z)=K,Z1,=1,,Z > 0.
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Unknown Covariance: Clustering Step

Given selected features SO, we solve SDP with sub-matrices:
_ T _
max <(2 X) 5. Bsm 50 (BT X) g Z>

ZER"X"

st. Z'=2,Z-0,t0(Z)=K,Z1,=1,,Z>0
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What We Need to Estimate

For both the feature selection and clustering steps, the key quantity required for
the extension is

> Y —pz) and TTLX.

We do not need to explicitly estimate the full precision matrix X1
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We adapt the Innovated Scalable Efficient Estimation (ISEE; Fan and

Lv 2016)

Idea: Partition the feature indices [p] into disjoint subsets Ap, Ag, ..

each subset A, estimate

YIX =

(2_1X)A’A

by nodewise regression.

Our approach: nodewise regression

Xy =

., Ap,. For

(=tpg)a,
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Nodewise regression

By multivariate Gaussian assumption X; N (pr, X),

(Xi)a = () + 2342 ac (111) 40 — Q0420 Xpe s

response intercept slope
+ Es; , where Eq; ~ N(0,Q,)).
~—— ’
residual
oy = (1) 4 Q= Q4 ac X =
Qaa A
(1) Ac
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Nodewise regression

o (Cm)a= Qaa ((me)a+ QL Quac () 1)
Cov(residual)

intercept
o (EX)a=E"m)a+ Qaa  Ea; .
N——

Cov(residual) residual

K =

|
T
T
N
o
Il

QA,AC Xz = (XZ)A
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Our Iterative Method under sparse precision matrix

1. Initialize: Obtain initial cluster assignments C:??, é’g C [n].
2. Iterate for t=0,1,2,..., until convergence:
2.1 ISEE subroutine: Given é(lt) and C;‘g), estimate 71 (u} — p3), T71X,
2.2 Feature selection: Let S**! be features where estimated St — pd)
vector has large magnitude.
Threshold defined by ¢ convergence rate of ISEE
2.3 Cluster update: Run SDP-relaxed K-means on the selected features thﬂ’.

. At+l At+l
Egtﬂ,gt“ to estimate new clusters G1+ 7G2Jr .
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‘m
; Simulations: identity covariance

o X-axis: Dimension p increases
while |Sp| = 10 and

|1 — p2|3 = 52 are fixed
e Y-axis: mis-clustering rate

e Our method improves upon

the non—sparsity-aware

| |
0 1,500 3,000 4,500 baseline.
-+ (1) Spectral clustering (non-sparse) —=—Algorithm 2 initialized by (1) .
-~ (2) Hierarchical clustering (non-sparse) —+—Algorithm 2 initialized by (2) ° Dependence on initial
-+¢-(3) SDP K-means (non-sparse) —+— Algorithm 2 initialized by (3)

clustering is mild.
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——IFPCA
—+—SKM

: identity covariance

L \—n—a—a—a—a’a/a
|

1,500 3,000 4,500

SAS
—e— CHIME

o X-axis: Dimension p increases
while |Sp| = 10 and
|1 — pol|3 = 52 are fixed

e Y-axis: mis-clustering rate

e Our method outperforms

existing two-step and iterative

methods
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—&— Algorithm 3

100 200 300 400

SAS —4—IFPCA ——SKM -e— CHIME

Simulations: effectiveness of ISEE and threshold

>~ chain graph with
correlation 0.45

X-axis: Dimension p increases
while |Sp| = 10,

1Z7H (1 — p2) |3 = 47 fixed
Y-axis: mis-clustering rate

Our method outperforms
existing two-step and iterative

methods
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Simulations: sparse precision matrix

Misclustering rate True positives at final step False positives at final step

T

T

100

——

|
200 300 400 o.0 2.5 5.0 75 100 0 10 20 30 40
Number of True Positives Number of False Positives

Algorithm 3 (ISEE threshold) =+ Algorithm 5 (graphical lasso)
Algorithm 6 (Gaussian maximal threshold)
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Sz
' Real Data Analysis

Our method IFPCA SKM SAS

Leukemia 0.93 0.84 0.79 0.87
MNIST 0.94 0.61 0.57  0.56

e Leukemia: n =45, p = 3871
e MNIST: n = 1000, p = 784, digits 1 and 7

o Evaluation metric: clustering accuracy
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Conclusion

Sparsity-aware iterative clustering combining convex relaxation, feature selection,

and high-dimensional precision estimation.
e Theory-guided:
— SDP K-means achieves simultaneous exact recovery on feature subsets with
sufficient signal; signal requirement is optimal under mild assumptions.
— Mild under- or over-selection is acceptable; aggressive misselection is harmful.
o Algorithm highlights:
— Alternates between feature selection (via estimated Fisher LDA) and
clustering (SDP K-means).
— Nodewise regression (ISEE) avoids full precision matrix estimation.
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Future Extensions

Key insight: Mild under- or over-selection is tolerable, but aggressive

misselection is harmful

Current limitation: Past clustering and feature selection results are not
explicitly utilized
Proposed improvements: Introduce explicit exploration and memory

— Use Thompson sampling for randomized feature selection
— Update Beta distributions to retain memory of past results

— Random draws from the Beta distributions encourage exploration
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Prelimary simulation for Thompson sampling approach
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0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000
Data dimension p Data dimension p
- Algorithm 1 with spectral initialization e Spectral initialization
Algorithm 1 with hierarchical initialization Hierarchical initialization
—=— Algorithm 1 with SDP K means initialization - SDP K means initialization
—— Bandit with permutation test
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